
www.manaraa.com
Proceedings of NAACL-HLT 2016 (Demonstrations), pages 92–96,

San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Kathaa: A Visual Programming Framework for NLP Applications

Sharada Prasanna Mohanty, Nehal J Wani, Manish Srivastava, Dipti Misra Sharma
Language Technology Research Center

International Institute of Information Technology, Hyderabad
{spmohanty, nehal.wani}@research.iiit.ac.in, {m.shrivastava, dipti}@iiit.ac.in

Abstract

In this paper, we present Kathaa1, an
open source web based Visual Programming
Framework for NLP applications. It supports
design, execution and analysis of complex
NLP systems by choosing and visually con-
necting NLP modules from an already avail-
able and easily extensible Module library. It
models NLP systems as a Directed Acyclic
Graph of optionally parallalized information
flow, and lets the user choose and use avail-
able modules in their NLP applications irre-
spective of their technical proficiency. Kathaa
exposes a precise Module definition API to al-
low easy integration of external NLP compo-
nents (along with their associated services as
docker containers), it allows everyone to pub-
lish their services in a standardized format for
everyone else to use it out of the box.

1 Introduction

Natural Language Processing systems are inherently
very complex, and their design is heavily tied up
with their implementation. There is a huge diversity
in the way the individual components of the com-
plex system consume, process and spit out infor-
mation. Apart from that, many of the components
also have associated services which in many cases
are really hard to replicate and/or setup. Hence,
most researchers end up writing their own in-house
methods for gluing the components together, and
in some cases, own in-house re-implementations
of the individual components, often inefficient re-
implementations. And on top of that, most of the

1https://github.com/kathaa/kathaa

popular NLP components make many assumptions
about the technical proficiency of the user who will
be using those components. All of these factors
clubbed together shut many potential users out of
the whole ecosystem of NLP systems, and hence
many potentially creative applications of these com-
ponents. With Kathaa, we aim to separate the design
and implementation layers of Natural Language Pro-
cessing systems, and efficiently pack every compo-
nent into consistent and reusable black-boxes which
can be made to interface with each other through an
intuitive visual interface, irrespective of the software
environment in which the components reside, and
irrespective of the technical proficiency of the user
using the system. Kathaa builds on top of numerous
ideas explored in the academia around Visual Pro-
gramming Languages in general(Green and Petre,
1996) (Shu, 1988) (Myers, 1990), and also on Vi-
sual Programming Languages in the context of NLP
(Cunningham et al., 1997).

2 Kathaa Modules

Kathaa Modules are the basic units of computa-
tion in the proposed Visual Programming Frame-
work. They consume the input(s) across multiple
input channels, process them, and finally pass on
their output(s) across the many output channels they
might have. The user has access to a whole array of
such modules with different utilities via the Kathaa
Module Library. The user can connect together these
modules in any combination as he pleases, as long
as the modules are compatible with each other. The
user also has the ability to tinker with the function-
ality of a particular module in real time by using an

92



www.manaraa.com

Figure 1: Example of a Hindi-Panjabi Machine Translation System, visually implemented using Kathaa.

embedded code editor in the Kathaa Web Interface
during or before the execution of the Kathaa Graph.

2.1 Kathaa Data Blobs
Every module receives inputs across multiple chan-
nels, or ports. Every input channel receives the data
in the form of a series of kathaa-data-blobs, and all
the input channels have the exact same number of
kathaa-data-blobs. Data blobs are processed in par-
allel by different instances of the same module dur-
ing execution, and most modules generate the same
number of data blobs across all their output chan-
nels. The concept of numerous data blobs spread
across multiple input channels enables us to effi-
ciently empower module writers to leverage from
the inherent parallelizability in tasks performed by
numerous NLP components. For example, some
modules might work at the level of sentences, so if
we have multiple sentences as inputs to this module,
all of them are passed as different kathaa-data-blobs
so that the framework can efficiently parallelize their
processing depending, of course, on the availability
of resources. Similarly, other modules could expect
parallelizability at the level of words, or phrases or
even a whole discourse. The kathaa-data-blobs were
very much inspired by the data-blobs used in Caffe.
(Jia et al., 2014)

2.2 Types of Kathaa Modules

2.2.1 Kathaa General Modules
As mentioned previously, most modules produce

the exact same number of kathaa-data-blobs as they
receive across their input channels. This can be
guaranteed because during execution, all the paral-
lel instances of the module are provided only a sin-
gle kathaa-data-blob in each of their input channels,
and when they are done processing, they write a sin-
gle kathaa-data-blob across their output channels.
The kathaa-orchestrator deals with the separation
of the blobs before passing the inputs to the mod-
ule instance, and the aggregation of the blobs after
each instance of the module has finished processing
their corresponding kathaa-data-blobs. These type
of modules can be basically called as the Kathaa
General Modules. To illustrate the above described
concepts we implement a very simple Echo mod-
ule2, which simply takes in a few data blobs across
a single channel, and spits out the same into a single
output channel. We also have a very flexible imple-
mentation of a Custom Module3 which can act as a
quick starting point when defining Kathaa General
Modules.

2https://git.io/vV4RA
3https://git.io/vV4Rp

93



www.manaraa.com

2.2.2 Kathaa Blob Adapters
Kathaa Blob Adapters, on the other hand are a

class of Kathaa Modules, which are provided with
all the blobs across all their input channels at the
same time, and they have the ability to modify the
number of blobs and pass it over to their output
channels. They can be used in giving the user a more
fine grained control over the parallalizability of dif-
ferent parts of their Kathaa graphs by using kathaa-
data-blobs. For example, a graph which receives a
whole discourse as a single blob, might want to pro-
cess the sentences parallely, and they could use a
line-splitter4 to split the whole discourse represented
as a single kathaa-data-blob into multiple kathaa-
data-blobs each representing a single sentence, and
when finally the user desired processing of the in-
dividual sentences are complete, a line-aggregator5

could be used to aggregate the processed sentences
again into a single kathaa-data-blob. Similar kathaa-
blob-adapters could be implemented to deal with
splitting and aggregation of kathaa-data-blobs at the
level of words, phrases, or even some custom logic.
Kathaa Blob Adapters will be crucial in exercising
the control over the inherent parallalisation support
in Kathaa Orchestrator. For example, in contrast
to the example cited above, if we are dealing cer-
tain language processing tasks which are inherently
not parallalizable after a certain level of granular-
ity, like say Anaphora Resolution, Multi Document
Summarisation, etc, the user will have to use an ap-
propriate Kathaa Blob Adapter, to make sure that
all the information that is required for the partic-
ular language processing task is available as a sin-
gle blob to be passed onto the module. In the case
of Anaphora Resolution, a single Kathaa Blob will
contain a string of N sentences, and in the case of
Multi Document Summarisation, a single Kathaa
Blob will contain a string of M Documents. In both
the previous cases, the module can receive multi-
ple such Kathaa Blobs, which can then be processed
parallely based on the availability of resources.

2.2.3 Kathaa User Intervention Module
In some NLP systems, the overall execution of the

system might have to halt for some kind of user feed-
back. Like in the case of resource creation, where

4https://git.io/vV4Rj
5https://git.io/vV40v

for example, you start with a bunch of sentences,
parse them using an available parser module, and
then you would want to add Anaphora annotations
by a human annotator (Sangal and Sharma, 2001).
In that case, a Kathaa User Intervention Module
could be used, where the overall execution at the par-
ticular node in the graph halts till the user modifies
the kathaa-data-blobs as he pleases and resumes the
execution at the said node. Kathaa core implements
a Kathaa User Intervention6 module for reference.

2.2.4 Kathaa Resource Module
Kathaa Resource Modules are the class of

Kathaa Modules which do not do any processing of
the data, but instead they store and provide a corpus
of text which can be used by any of the modules in
the whole graph during execution.

2.2.5 Kathaa Evaluation Module
The aim of Kathaa is to provide an intuitive en-

vironment for not only prototyping and deployment
but also debugging and analysis of NLP system.
Hence, we include a class of modules called as
Kathaa Evaluation Modules which very much like
Kathaa Blob Adapters receive all the blobs across all
the input channels, and do some analysis and spit out
the results into the output channels. While in prin-
ciple this a subset of Kathaa Blob Adapters, these
modules enjoy a separate category among Kathaa
Modules because of their utility in designing com-
plex NLP systems. We implement a sample classi-
fication evaluator7 to help researchers quickly come
up with easy to visualize confusion matrices to aid
them in evaluating the performance of any of their
subsystems. This could act as a starting point for
easily implementing any other Evaluation modules.

2.3 Kathaa Module Services

Most popular NLP Components work in completely
different software environments, and hence stan-
dardizing the interaction between all of them is a
highly challenging task. Kathaa allows every mod-
ule to define an optional service by referencing a
publicly available docker container in the module
definition. Kathaa deals with the life-cycle man-
agement of the referenced containers on a config-

6https://git.io/vV40U
7https://git.io/vV40f

94



www.manaraa.com

urable set of Host Machines. The corresponding
kathaa-modules function definition then acts as a
light weight wrapper around this service. This fi-
nally enables different research groups to publish
their service in a consistent and reusable way, such
that it fits nicely in the Kathaa Module ecosystem.

2.4 Kathaa Module Packaging and
Distribution

Kathaa Modules reside as a collection of Kathaa
Module Groups in a publicly accessible git Repos-
itory. Each of these modules have a specification
definition file called as package.json, where the
author of the module has to specify the basic meta-
data about the module like the name, version, input
channels, output channels, etc. The user has the op-
tion to reference the corresponding Kathaa-Service
by referencing the Docker container in this file. The
type of the input and output channels can also be
specified to mark compatibility of different modules
with each other. A sample example of a Kathaa
module template can be seen in the case of the cus-
tom module8. All the supported Module Groups for
a particular Kathaa Instance can be referenced di-
rectly by their publicly available links on the Kathaa
Server, and under the hood, Kathaa deals with the
dependency resolution of the modules, download-
ing of all the modules, instantiation of the associated
Docker Container if any, etc.

2.5 Kathaa Interface

Kathaa Interface lets the user design any complex
NLP system as a Directed Acyclic Graph with the
Kathaa Modules as nodes, and edges being the flow
of kathaa-data-blobs between them. Users have the
option to not only execute any such graph, but also
interact with it in real time by changing both the state
and functionality of any of the module right from
within the interface. It can be a really useful aid
in debugging complex systems, as it lets the User
easily visualize and modify the flow of kathaa-data-
blobs across the whole Kathaa Graph. Apart from
that, it also encourages code-reuse by lettings users
”Fork” a graph, or ”remix” the designs of NLP sys-
tems to come up with better and adapted versions of
the same systems.

8https://git.io/vV40J

2.6 Kathaa Orchestrator

Kathaa Orchestrator is at the core of the whole Vi-
sual Programming Framework. Kathaa Orchestrator
obtains the structure of the Kathaa Graph and the ini-
tial state of the execution initiator modules from the
Kathaa Interface, and then it goes on to efficiently
orchestrate the execution of the graph depending on
the nature and state of the modules, while dealing
with process parallelisms, module dependencies, etc
under the hood.

3 Use Cases

Kathaa, as a Visual Programming Framework was
developed with Sampark Machine Translation Sys-
tem as a use case. We ported all the modules
of the Hindi-Panjabi9 and Hindi-Urdu10 Translation
Pipelines of Sampark Machine Translation System
into Kathaa (SAM, 2016). We then demonstrated
the use of Kathaa in creation of NLP Resources by
the use of Kathaa User Intervention modules, and
also moved on to demonstrate visual analysis of dif-
ferent classification approaches by using the Kathaa-
Classification-Evaluation module. We are currently
also exploring the use of Kathaa in classrooms to
help students interact with and design complex NLP
systems with a much lower barrier to entry. All these
example Kathaa Graphs are the seed Graphs that are
included in the repository, and can be used out of the
box. It is important to note that these use cases that
we managed to explore are only the tip of the iceberg
when it comes to what is possible using a framework
like Kathaa. One of the key features in Kathaa which
enables for it to be used in a whole range of use cases
is the easy extensibility. The Kathaa Module Defini-
tion API, enables the user of the system to theoreti-
cally define any function as a Kathaa Module. Also,
Kathaa internally works using event triggers, hence
making it a practical possibility to define modules
which may run for days or weeks, quite helpful
when exploring Kathaa for use cases where the user
might want to define a Kathaa Module which trains
a model based on some pre-processed data. The
NPM(Tilkov and Vinoski, 2010) inspired packag-

9https://github.com/kathaa/
hindi-panjabi-modules

10https://github.com/kathaa/
hindi-urdu-modules

95



www.manaraa.com

ing system, is again something which we believe
can help with large scale adoption of a system like
Kathaa. It paves the way for a public contributed
repository of NLP components, all of which can be
mashed together in any desired combination. The
ability to optionally package individual services us-
ing Docker Containers also helps make a strong case
when pitching for the possibility of a large public
contributed repository of NLP components. These
are a few things which set Kathaa apart from already
existing systems like LAPPS Grid(Ide et al., 2014),
ALVEO(Cassidy et al., 2014) where the easy exten-
sibility of the system is a major bottleneck in its
large scale adoption. The interoperability between
existing systems is also of key importance, and the
design of Kathaa accommodates for its easy adap-
tation to be used along with other similar system.
The assumption, of course, is that a wrapper Kathaa
Module has to be designed for each target system
using the Kathaa Module Definition API. The wrap-
per modules would be completely decoupled from
the Kathaa Core codebase, and hence can be de-
signed and implemented by anyone just like any
other Kathaa Module.

A demonstration video of many features and use
cases of Kathaa is also available to view at :

https://youtu.be/woK5x0NmrUA

4 Conclusion

We demonstrate an open source web based Visual
Programming Framework for NLP Systems, and
make it available for everyone to use under a MIT
License. We hope our efforts can in some way cat-
alyze more new and creative applications of NLP
components, and enables an increased number of re-
searchers to more comfortably tinker with and mod-
ify complex NLP Systems.

Acknowledgments

The first real world implementation of a Kathaa
Graph was achieved by porting numerous modules
from Sampark MT system developed during the ”In-
dian Language to India Language Machine trans-
lation” (ILMT) consortium project funded by the
TDIL program of Department of Electronics and
Information Technology (DeitY), Govt. of India.
Kathaa is built with numerous open source tools

and libraries, an (almost) exhaustive list of which
is available in the Github Repository of the project,
and we would like to thank each and every contrib-
utor to all those projects.

References
[Cassidy et al.2014] Steve Cassidy, Dominique Estival,

Tim Jones, Peter Sefton, Denis Burnham, Jared
Burghold, et al. 2014. The alveo virtual laboratory:
A web based repository api.

[Cunningham et al.1997] Hamish Cunningham, Kevin
Humphreys, Robert Gaizauskas, and Yorick Wilks.
1997. Gate - a general architecture for text engineer-
ing. In Proceedings of the Fifth Conference on Applied
Natural Language Processing: Descriptions of System
Demonstrations and Videos, pages 29–30, Washing-
ton, DC, USA, March. Association for Computational
Linguistics.

[Green and Petre1996] Thomas R. G. Green and Marian
Petre. 1996. Usability analysis of visual programming
environments: A ’cognitive dimensions’ framework.
J. Vis. Lang. Comput., 7(2):131–174.

[Ide et al.2014] Nancy Ide, James Pustejovsky, Christo-
pher Cieri, Eric Nyberg, Di Wang, Keith Suderman,
Marc Verhagen, and Jonathan Wright. 2014. The lan-
guage application grid. In LREC, pages 22–30.

[Jia et al.2014] Yangqing Jia, Evan Shelhamer, Jeff Don-
ahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. 2014. Caffe:
Convolutional architecture for fast feature embedding.
In Proceedings of the 22Nd ACM International Con-
ference on Multimedia, MM ’14, pages 675–678, New
York, NY, USA. ACM.

[Myers1990] Brad A. Myers. 1990. Taxonomies of vi-
sual programming and program visualization. J. Vis.
Lang. Comput., 1(1):97–123.

[SAM2016] 2016. Sampark: Machine translation among
indian languages. http://sampark.iiit.ac.
in/sampark/web/index.php/content. Ac-
cessed: 2016-02-10.

[Sangal and Sharma2001] Rajeev Sangal and Dipti Misra
Sharma. 2001. Creating language resources for nlp in
indian languages 1. background.

[Shu1988] Nan C Shu. 1988. Visual programming. Van
Nostrand Reinhold.

[Tilkov and Vinoski2010] Stefan Tilkov and Steve Vi-
noski. 2010. Node. js: Using javascript to build high-
performance network programs. IEEE Internet Com-
puting, 14(6):80.

96


